Semisimple algebras, Galois actions and group cohomology
نویسندگان
چکیده
منابع مشابه
Module cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملAutomorphisms of Cornoa Algebras, and Group Cohomology
In 2007 Phillips and Weaver showed that, assuming the Continuum Hypothesis, there exists an outer automorphism of the Calkin algebra. (The Calkin algebra is the algebra of bounded operators on a separable complex Hilbert space, modulo the compact operators.) In this paper we establish that the analogous conclusion holds for a broad family of quotient algebras. Specifically, we will show that as...
متن کاملJumps in Cohomology and Free Group Actions
A discrete group G has periodic cohomology over R if there is an element in a cohomology group, cup product with which induces an isomorphism in cohomology after a certain dimension. Adem and Smith showed if R = Z, then this condition is equivalent to the existence of a finite dimensional free-G-CWcomplex homotopy equivalent to a sphere. It has been conjectured by Olympia Talelli, that if G is ...
متن کاملTwisted Actions and Obstructions in Group Cohomology
This article is intended to answer the question “Why do you guys always want to twist everything?” We review the various ways in which twists, twisted actions and twisted crossed products arise, and then discuss some cohomological obstructions to the existence and triviality of twisted actions. Our review begins with the classical problems of classifying group extensions and irreducible unitary...
متن کاملQuivers, Floer Cohomology, and Braid Group Actions
1a. Generalities. This paper investigates the connection between symplectic geometry and those parts of representation theory which revolve around the notion of categorification. The existence of such a connection, in an abstract sense, follows from simple general ideas. The difficult thing is to make it explicit. On the symplectic side, the tools needed for a systematic study of this question ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1994
ISSN: 0022-4049
DOI: 10.1016/0022-4049(94)90002-7